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This is a final report of work carried out under APOSR contract #A7OSR-90-0198.
The focus is two-fold. One aspect concerns photoinduced effects in fibers,
expecially the processes of self-organized second-harmonic generation in fibers.
For the most part we have developed the microscopic theory of defect formation in
glass. The basic physics involved in second-harmonic generation in fibers has
led to a number other possible experiments and applications. For example, it is
known that a photogenerated current cannot be produced by a single optical beam
illuminating a centrosymmetic medium but it is now recognized that a current can
be generated in a centrosymmetric medium by illumination with two harmonically
related optical fields. However, we have concluded that as an application,
self-organized second-harmonic generation in fibers does not appear to be a
practical means of frequency doubling conventional lasers. Thus, until a
conceptual or practical breakthrough occurs, we have brought to a close the
experimental and theroetical work on this subject. (SEE REPORT FOR MORE DETAILS)
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Reversibility and Time Dependence of X(2) Grating

Erasure in Optical Fibers

Baiming Guo, James Leitch, Anat Sneh, and Dana Z. Anderson

Department of Physics and Joint Institute for Laborator" Astrophysics
University of Colorado, Boulder, CO 80309-0440

Abstract

We performed a reversibility test of X%21 gratings in Ge-doped optical fibers to

gain some insight into X(2) grating dynamics. The gratings were written with an IR beam

and its second harmonic and erased with the second harmonic beam. No drop in the

saturated second-harmonic power was seen for at least ten cycles of growth and erasure,

indicating that grating formation is optically reversible. We also investigated the time

dependence of the erasure and the change in the erasure rate with the erasing intensity.

The grating amplitude shows a power law dependence on erasure time, in agreement with

Ouellette et al. We show that the power law can be derived from a fundamentally

exponential process through consideration of the near Gaussian transverse intensity

profile of the fiber modes. Finally, we determine the number of 532 nm photons involved

in the erasing process to be N = 3.8+0.2. We speculate that a metastable state may be

responsible for such a large photon number.
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Introduction

The mechanism of efficient second-harmonic generation in doped glass fibers has

been investigated since Osterberg and Margulis observed efficient second haril-onic

generation in optical fibers in 1986.1,2 By now, several models have been proposed.3 45,6

and many researchers suggested that a defects-related self-organized periodic X(2) grating

is responsible for the efficient second-harmonic generation, although the different models

give different mechanisms for growth of the X(2) grating. Some researchers have

demonstrated optical erasure of X(2 ) gratings and several have measured the photon

number dependence at different wavelengths. 7-13 Ouellette et al.'s green light erasure

experiment 7 suggested the time dependence of the erasure obeys [Itn(O)/ ls(t)"2 ,t,

They found a photon number of 4.2±1.2 at 532nm and stated that the process was

reversible. Hibino et al.'s IR light erasureII gave 4.1±0.5 photons at 1064!,m. Carvalho et

al.'s UV light erasure12 gave 1.2±+0.2, an one UV photon process. Ehrlich-Holl et al.'s

erasure experiment' 3 showed that the growth/erasure process was irreversible in Ge- and

P-doped optical fibers. We investigated the reversibility of the X(2 ) gratings to obtain

some insight into the dynamics of the gratings, We also characterized the time

dependence of the erasure and the change in the erasure rate with the erasure intensity.

Both the IR and its second harmonic are used for the seeded grating growth and only the

second-harmonic beam is used for erasure of the grating after the saturated growth. We

showed that the X(2 ) grating seeded growth and subsequent green light erasure is

reversible in Ge-doped single mode optical fibers, indicating that the microscopic grating

formation/erasure process is evidently reversible. The grating amplitude showed a power

law dependence on erasure time, in agreement with Ouellette et al. 7 We showed that the

power law can be derived from a fundamentally exponential process through

consideration of the transverse Gaussian intensity profile of the fiber modes. We also

found the number of 532nm photons participating in the grating erasure process to be
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3.8±0.2. We give a possible explanation based on the existence of a metastable

intermediate state.

Experiments

The experimental setup is shown in Fig. 1. We used Newport F-SA fiber (single

muue in green) having a Ge-doped core with a .Y.24~m core diameter and an NA ot U. 11.

The 4.0cm-long fibers with well-cleaved ends were immersed in index matching fluid to

exclude cladding modes. The 1064nm IR average power through the fiber was about

56mW, corresponding to a peak power of about 10kW for the mode-locked and Q-

switched Nd:YAG laser pulses. The average seed power at 532nm was 0.75mW through

the fiber. The erasure power at 532nm was in the range from 0.28 to 2.5mW. We

prepared the grating by sending both the IR and the seed beams into the fiber until the

induced second harmonic reached saturation and erased the grating using only the

second-harmonic beam. Furthermore, the relative phase between the seed second-

harmonic and IR writing beams is maintained with the help of an auxiliary SHG crystal

and a phase-sensitive servo system. The phase servo includes a piezo phase adjuster, a

KDP crystal, a photodetector, a lockin amplifier and a signal generator.

Results and Discussions

Our first experiment is to test the reversibility. We showed that the grating seeded

growth/green light erasure process is reversible. We wrote and then erased the gratings

to at least ten cycles in a single fiber with observing no drop in the saturated second-

harmonic efficiency (Fig. 2). It indicated that the microscopic process involved is



evidently reversible. The reversibility also allows us to use a single piece of fiber for

entire experiments.

We next determine the time dependence of the green light erasure. We found that

the time dependence of the erasure is non-exponential, similar to the findings of Ouellette

et al. 7 They suggested that the erasure of the grating amplitude G(t) is given by a power

law

dG(t)/dt = -aGC (t)

assuming that the induced second-Yarmonic intensity ls,(t) is proportional to G2(t), then

the time dependence of the second-harmonic intensity is given by

ISH(t) = ISH(0)/[l + 21H (O)xat]"' (1)

where a is the erasure rate, x is a parameter reflecting the Lime dependence The time

dependence erasure exponent x and the erasure rate a are both free parameters in our fit.

Our experimental data fit well by the power law, as shown in Fig. 3. The time

dependence can be explained by examining the influence of a non-uniform intensity

profile on an exponential erasure process. Assuming that the microscopic erasure process

is exponential in nature, then the time dependence of the local grating amplitude g(t)

satisfies

dG(t)/dt = -G(t)

where a is the erasure rate. The erasure of the grating in the fiber, however, is

inhomogeneously broadened by the non-uniform intensity profile of the fiber modes. The
total induced second harmonic as a function of erasure time is given by the integral of the

time-dependent local grating amplitude multiplied by the electric fields involved in

generation of second harmonic from the grating

0C f G(r, t)E2(r)E*,(r)rdr
ESHG (t)0
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where G(r,t) = Goe-'"'. We assume that the initial grating amplitude Go is independent

of the transverse coordinate r. Approximating the IR and second-harmonic modes as

Gaussian with waist sizes w1 and w?:

E,(r) = Ewoe-</"

Eý,o,(r) = E,,,,oe-'/

the erasure rate a is proportional to a power 3 of the erasure intensity I, a = a(1' then

the time-dependent erasure of the second-harmonic field strength is given by

ESH,(t) ju"-Ju e-('edu (2)

where K = 11+4/2w4] We show that the time dependence given by the integral in Eq.2 2 "

2 can be approximated by a power law (Fig. 4). The data points are generated using the

Gaussian profile model and are fit with the power law given by Eq. 1. As can he seen

from the figure, the approximation is very good. Thus, while the microscopic process

may well be exponential, the power law can be explained by taking into account the

transverse profile of the beams. We note that other inhomogeneities, such as an energy

distribution of defect levels, may also contribute to the power law behavior.

From erasure rate measurements over a range of erasure intensity, we determine

the green photon number involved in the erasure process. The photon number 0 is given

by the slope of the erasure rate vs. erasure intensity curve in log-log scale. We find that

the photon number determined using the power law is identical to the photon number

found with the Gaussian profile model. From our data, the number of green photons

involved in erasure is 3.8±0.2 (Fig. 5). This differs from the values expected from a

straightforward 2 green photon or 4 fundamental wavelength photon photovoltaic model.

Tsai and Griscom"5 explained this four green photon dependence by the bleaching of Ge-

associated defect centers, and determined the photon number about four.

Our possible explanation is based on the experimental evidence from Carvalho et

al. 14 that a metastable intermediate state exists in the grating formation process
responsible for SHG in optical fibers. The physical picture is shown in Fig. 6 Between the
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ground and the ionization state, there is a metastable state with decay constant y. The

rate equations can be written a

pA = -op,

p 2 = apl - P2 - YP2
03 = PP2

Where a, #3 are the excitation coefficients from ground state and metastable state

respectively, y is the decay coefficient for the metastable state, p,, p. and p, are the

electron densities at the ground, metastable, and ionization states respectively.
At steady state, ,2 = 0. If we assume that ca = aIr,, 3 = bl,, for two photon

absorption between levels, where a and b are constants, then we obtain the ionization rate

5 = abp)1 /(bI + y)

We consider the limiting cases. When bi2,, >> y, the metastable state i., saturated and

53 = p~aI2,,, When b12, << y, we get a different power dependence 0, = plabl2,/y. If

we assume the erasure rate is proportional to the ionization rate, then this model gives the

erasure rate proportional to the second to fourth power of the erasure intensity, depending

on whether the metastable state is saturated or not. Our green erasure rate proportional to

the (3.8±0.2)th power of erasure intensity (Fig. 5) lies within this power dependence

range and is closer to the lower erasure intensity end. But we could not go to lower

erasure intensities due to noise and the fact that it would take many many hours to erase

the grating. It is also hard to reach higher erasure intensities because of the damage

threshold of the fibers.

Conclusion

Seeded Xm grating growth/green-light erasure is reversible. The non-exponential

time dependence can be explained by inhomogeneous broadening due to the intensity

profile of the fiber modes. The photon number of the erasure process is 3.8±0.2. A

possible explanation of the photon number is based on the existence of an intermediate

excited state.
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Figure Captions

Fig. I Experimental setup. A is an attenuator, F is a colored glass filter, PA is a phase

adjuster, BS is a beamsplitter, HBS is a harmonic beamsplitter used to either separate or

recombine the IR and SH beams, KTP and KDP are frequency-doubling crystals.

Fig. 2 The reversibility test. The X1'2 grating seeded growth/green-light erasure process

is reversible. This sample curve shows 10 cycles of growth and erasure in a single fiber.

Fig. 3 A typical time dependent X'2 grating green-light erasure curve with a power law

fit.

Fig.4 A power law fit to simulated data. The data points are generated from the Gaussian

profile model(Eq. 2) using a fixed photon number and erasure intensity. We fit the data

with a power law(Eq. 1).

Fig. 5 Photon number dependence. We assume that the erasure rate is proportional to a

power of the erasure intensity. The slope of the erasure rate vs. erasure intensity curve in

iog-log scale gives a photon number of 3.8±0.2.

Fig. 6 The physical picture of the energy levels involved in the grating formation/erasure

process, including a metastable intermediate state with decay constant 7.
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I. INTROI)UCIiON

This is a final report of work carried out under AFOSR contract #AFOSR 90-0198. The focus, isl

two-fold. One aspect concerns photoinduced effects in fibers. especially the processes of' ,elf-

organized second-harmonic generation in fibers. For the most part we have developed the

microscopic theory of second-harmonic generation in fibers as far as possible in absence of a

micro and mesoscopic theory of defect formation in glass. The basic physics involved in second-

harmonic generation in fibers has led to a number of other possible experiments and applicatlions.

For example, it is known that a photogenerated current cannot be produced by a single optical

beam illuminating a centrosymmetric medium but it is now recognized that a current can be

generated in a centrosymmetric medium by illumination with two harmonically related optical

fields. However, we have concluded that as anl application, self-organized second-harmonic

generation in fibers does not appear to be a practical means of frequency doubling conventional

lasers. Thus, until a conceptual or practical breakthrough occurs, we have brought to a close ihe

experimental and theoretical work on this subject,

The second aspect concerns the dynamics and self-organization of photorefraclive optical

circuits. In past work we have produced circuits that self-organize according to the nature of

their time dependent input. After self-organizing they process information in an adaptive and

useful way. Our most highly developed circuit in the previous report was a demultiplexer that

separates signals from a multimode fiber. In this past year we analyzed and began construction

of an optical system that is to implement what is known as a self-organizing topology preserving

Kohonen map [11. Kohonen maps learn about the topological properties of their input

environment, and provide a powerful means to process data such as images, especially data

where a priori little is known about the topological relationship of the input data at various times.

Kohonen networks have been used successfully, for example, to process acoustic signals

(including speech) and in solving various optimization problems such as the traveling salesman

problem. The dynamics of a Kohonen network are natural to the nonlinear photorefractive

systems that we have previously developed. The work involves characterizing the spatio-

temporal dynamics of photorefractive systems. In so doing we hav'e formulated the theory of
transverse instabilities of a single photorefractive coupling ard out ined the analogies and

differences with those observed in Kerr media t2, 3, 41. In particular we looked at (he formation

of hexagonal patterns 15, 6, 71.
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The bulk of the theoretical and experimental work on second harmonic generation is

collected in the thesis of Dr. James Leitch, and the work on the reversibility and time-

dependence of the X(2) gratings responsible for second-harmonic gratings are included in a

preprint which we include with this report. The remainder of this report gives a detailed account

of the work on self-organization and dynamics in photorefractive systems. The following section

gives a brief overview of Kohonen Networks. Section III discusses the preliminary optical

implementation as well as some of the experimental results. In particular, we find the optical

system exhibits an interesting instability which we have analyzed and found to be caused by the

finite and inevitable misalignment of the optical system. We discuss the "wandering spot"

behavior in Section IV. The investigation of dynamics led to a tangential but related theoretical

investigation of spatial instabilities in pumped photorefractive media. This investigation is

presented in section V. We wrap up the report with a discussion of numerical modeling of

optical Kohonen maps and discuss prospects for future work in section VI.

II. KOHONEN TOPOLOGY PRESERVING MAPS

The schematic drawing of a Kohonen topology preserving map is shown in Fig. 1, drawn using

what is by now conventional neural network symbols. The key element in the network is a layer

of mutually interacting nonlinear elements, and a collection of weights that connect each input

element to the input of every nonlinear processing element. The weight, or connection strengths

of each of the line from input to processing unit determines the extent a given input

communicates with a given processing element. A given collection of input stimulates the

processing units, and the latter units want to "turn on" However, they are competitive, so that

one unit turning on causes the others to be turned off, more or less. The competitive interaction

in steady state is such that only one output, or a localized collection of outputs, are on. the others

are forced off. This is called winner-takes-all (WTA) behavior. The winning unit (or collection)

Interacting
Adaptive Processing
Network nits

Inputs Outputs

Figure 1. Schematic of a Kohonen self-organizing, topology preserving map.
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adjust their connection weights to the input in such a way that the next time the very same input

appears, it is all the more likely that the same units again win the competitive interaction. This

WTA competition and subsequent weight updating takes place for each of many inputs.

This seemingly simple set of processing sequences gives rise to surprisingly powerful

processing capability [1). in steady state, the response of the outputs will reflect the topological

organization of the input space. That is topologically nearby inputs will excite neighboring

output. In another view, if say the inputs are a collection of images, the network will discover

what images are more similar or more dissimilar so that similar images will excite neighboring

outputs, dissimilar inputs will excite more distant outputs. The more distant the inputs, the more

distant the outputs.

The essential ingredients of the Kohonen network are a) the adaptive interconnections from

the input to the processing units and b)the WTA interaction among output units.

III. OPTICAL KOHONEN NETWORK

We have implemented the essential features of the Kohonen network using a simple two-

photorefractive crystal optical system, illustrated in Fig. 2.. The figure also establishes a rough

analogy between the Kohonen network drawn above and the optical system. The major

anological difference being that the output processing elements as well as the interconnections

are essentially a continuum, instead of a discrete set.

-4--



V •The imaging resonator has no
D,,, preferred transverse mode.
Transfer

G ...... Therefore the oscillation mode is
controlled by the nonlinearities.

Trr,•,,frr .The preferred mode is a localized
Tremfer• spot that minimizes gain saturation

"and maximizes loss saturation.

L A rough analogy may be made
f between 46e photorefractive circuit

n • and Kohonn's 9hgorithm:

f Photorefractive Adaptive
Rday28 Pm Gain Medium Network

Fresitel =750 Photorefractive Interacting
Number Loss Medium 0 " 0 Processing Units

zd * NeighborhoodLocalized 0 Response
Mode

Gain Pinne Loss Plane Holographic 9 Similarity
Diffraction 0 Measure

Figure 2. Imaging resonator for Kohonen self-organizing map implementation.

The optical circuit is composed of an imaging resonator with a photorefractive gain medium

and a photorefractive loss medium. The two media are in conjugate planes, that is, the loss

medium lies in the Fourier plane of the gain medium, and vict versa. The gain medium serves

also as the interconnection weights. Input data is provided by placing images, or other

information on the gain pump laser beam.

Our recent work has primarily focused on the complex dynamics of the system in Fig. 2. If

we consider for a moment a static pump (no information imposed on it) we can qualitatively

describe the winner-takes all behavior: An imaging resonator has no well defined modes (or an

infinite set of modes). Thus, practically any self-consistent field distribution can oscillate in the

ring resonator given sufficient gain. In order to optimize the energy available from the pump

laser, an oscillating field tries to match the size of the pump beam, which is chosen to be

relatively large. On the other hand, the loss medium modifies the oscillation characteristics. The

photorefractive loss medium behaves somewhat like a saturating dye absorber, except that in our

case the saturating intensity is directly determined by the loss pump intensity. The oscillating

field most effectively minimizes its loss by becoming as small as possible, because, for the same

amount of total power it can best reach the saturation intensity. Because the gain and loss are in

conjugate optical planes, these two energy maximization strategies in the gain and loss medium

complement each other. A large beam in the gain medium corresponds to a small one in the loss

medium. On the other hand, there is no preferred location in the loss medium provided the loss

pump has a uniform intensity. Therefore, the oscillation in the ring will form a small spot,

-5-



anywhere in the loss plane. This corresponds to a winner-takes-all behavior in a two-

dimensional spatial cui-,inuum.

With the loss pump not present, the oscillator has no preference for a small spot in the
(would-be) loss plane, so a very broad oscillating field arises. Fig. 3 shows the experimental

results of the collapse of the transverse mode profile of the oscillating beam as the loss pump is
first allowed to induce loss in the resonator. Shown are the oscillation intensities in both the loss

and the gain planes. Note the collapse of the oscillation in the loss plane from a broad oscillating
distribution to a single small spot. The image of the gain plane also appears to show some
reduction in spot size but in fact the spot is merely decreasing its overall intensity in response to

the additional net loss in the ring resonator.

IV. WANDERING EXCITATIONS IN A PHOTOREFRACTIVE RING RESONATOR

While the imaging gain and loss resonator did exhibit winner-takes-all behavior, we found that

the output spot position in the loss plane was spatially unstable [8]. We have spent considerably

effort developing an appropriate model for this instability. In this section we discuss the

experimental and theoretical investigation of this phenomenon.

The eigenmodes of a linear or nonlinear oscillator are found by imposing self consistent

boundary conditions such that the oscillator field is equal to itself after one round trip of
propagation. The field eigenmodes found in this way normally correspond to stationary

distributions of the electric field. In some special cases no such stationary solutions exist. In this

case the eigenmodes describe an electric field profile which continuously changes in time. A
clear distinction may be made between this situation and that of an unstable multimode
resonator, within which the electric field profile continuously changes due to the excitation of
one or another stationary transverse mode, or the simultaneous excitation of multiple modes,
each with a distinct eigenfrequency.

The near imaging ring resonator with photorefractive gain and loss is an example of an
oscillator with nonstationary eigenmodes. We redraw the schematic here in Figure 4 to illustrate
the experimental and numerical investigation of the spatial instability mentioned in the previous

section.

--6--
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Figure 3. Collapse of the transverse mode distribution demonstrating winner-takes-all behavior of the
imaging resonator with gain and loss. The pictures correspond to 1/30 of a second between video
frames.

In the single transverse mode ring oscillator with photorefractive gain and loss the

nonlinearities lead to bistability and self-pulsing [9, 10]. In the imaging ring with gain and loss

the nonlinearities interact in a different manner, leading to spatial mode collapse as described

above. In the imaging ring resonator [11] any transverse field profile is imaged onto itself after

one cavity round trip, thus the empty resonator supports a continuum of transverse modes.

3ince the linear cavity has no influence on the field profile the effect of the photorefractive

nonlinearities assumes added importance. To give the example in the previous section a more

concrete form, suppose the oscillation mode can be approximated by a Gaussian. Then its Fourier

transform is also a Gaussian with a width inversely proportional to the input Gaussian. Place a

photorefractive saturable gain nonlinearity, which tends to broaden a Gaussian profile, in one

plane, and the complementary photorefractive saturable loss nonlinearity, which tends to narrow

a Gaussian profile, in the conjugate plane. Thus both nonlinearities cooperate to encourage the

formation of a narrow Gaussian in the plane of the loss medium.

-7--
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Figure 4. Imaging ring resonator with photorefractive gain and loss. All lenses are f=100 mm with a spacing of 2f.

The gain and loss pumps are from a cw Argon laser, At,=514 nm.

However, as indicated above, the experimental realization of this device showed that the

localized field excitation drifts in the transverse plane of the resonator f8]. An example of this

motion is shown in Fig. 5. The excitation appears at some point in the aperture and then drifts in

a direction determined by the cavity alignment.

Depending on the details of the cavity alignment, and the gain and loss pump intensities, the spot

either drifts to the edge of the aperture and disappears before reappearing again in its original

position, or else it executes a cyclic motion wholly within the aperture. In the latter case the spot

does not move in a closed circle but rather appears, moves a short distance, and then disappears.

before repeating its motion. It takes a few seconds for the spot to execute a single traverse across

the aperture. The spot will typically choose a new drift path after about 10 cycles along any given

path.
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Figure 5. Experimental observation of spot motion. Frames were
recorded at 0, 3, 7, 9 and 10 seconds of elapsed time in pictures from left
to right, top to bottom.

The wandering motion, alternating between paths that are each repeated a few times.

continues indefinitely. The spot motion appears to be determined by the cavity alignment sincc

small adjustments to one of the resonator mirrors change the spot trajectory noticeably.

The spot motion has been simulated by numerical calculations of the resonator dynamics.

The optical field and the photorefractive gratings are discretized on a square lattice. We assume

no crossing of the pump and signal beams in the gain or loss crystals, but retain the axial

dependence of the field and gratings in each crystal. Thus there is no interpixel coupling within

the crystals. The transverse coupling which leads to mode collapse arises from placing the

crystals in spatially conjugate planes. If the cavity is assumed to be perfectly aligned the spot

forms in a location determined by the maximum of the initial seeding. and is stationar,.

Misalignment of the cavity is modeled by introducing a phase wedge in the cavity

d(x,y)=expi(6,x+ 53,y), where x, y are the tiansverse coordinates and 6,8, characterize

the slope of the wedge. Placing the wedge next to the gain crystal results in a continuous

motion of the spot parallel to the wedge gradient V1' - 6,.i + 6J. An example of numerical

simulations using 21 x 21 grid points is shown in Fig. 3. for 3,/45, =2 and3x,; .,, = 1.

wherex,er,., is the total width of the aperture in Fig. 3. Additional calculations indicate that the

rate of spot motion is proportional to S for small 6. The observed trajectory shown in Fig. 2

does not lie on a straight line because the cavity misalignments are not well characterized by a

simple linear wedge.
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C

Figure 5. Calculated spot motion. The excitations labeled a,b and c correspond to 400.

1800 and 3000 gain crystal time constants. The dashed line is drawn parallel to V'().

In conclusion we have shown that the oscillation pattern in a near imaging ring resonator

with photorefractive gain and loss is localized but does not have a well defined position.

Numerical simulations show that the motion of the field excitation is governed by small

misalignments of the optical cavity.

V. TRANSVERSE INSTABILITY OF COUNTER-PROPAGATING WAVES

IN PHOTOREFRACTIVE MEDIA

The desire to understand the dynamics of the imaging resonator also led us to consider simpler

photorefractive instabilities. Small-scale transverse instability of a single beam or two counter-

propagating beams in a Kerr-type nonlinear medium has been known in nonlinear optics for

some time (see e.g. [2, 3, 4]). The instability manifests itself by the generation of a pair of
satellite beams traveling at small angles ±0Q. to the primary beams. The interference of the

primary and satellite beams results in a trans-lerse intensity modulation with the characteristic
spatial scale 1, = 27r/Oko. This transverse modulation is now attracting attention in connection

with the formation of patterns in nonlinear optical systems [5, 61. In the case of counter-

propagating beams the nonlinear stage of the instability may, in some cases, result in the

formation of hexagonal or square patterns with the size of the patterns being determined by the
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characteristic spatial scale I of the linear stage. Up to now patterns have been observed in

atomic vapors [7] and liquid crystals [12]. It has been suggested 1131 that photorefractive crystak,

may be a suitable choice for nonlinear medium since they exhibit high nonlinearitieý ard the

value of nonlinear coupling in the crystal can be easily varied by external means. Howv.ver.

important differences between the Kerr and photorefractive nonlinearities warrant the separate

analysis of transverse instabilities of counter-propagating beams that is presented here.

For the case of a single beam propagating through a nonlinear medium the onset of the

convective instability corresponds to the appearance of intensity modulation on its transverse

profile with the characteristic modulation period considerably less than the diameter of the beam.

Instability is possible for a range of angles 0 between the wavevector k/O of the strong plane

wave F0 and the wave vectors k., of the sidebands F,,, (Fig.6a). The characteristic angle,

corresponding to the largest amplification, is given by the condition 0,2 , ?n2Foi, where n, is the

Kerr coefficient of the medium.

Similarly two strong plane waves F0 and Bo counter-propagating in a Kerr medium turn out

to be unstable versus excitation of two pairs of waves: F,, and B._, situated as shown in Fig.6b

[4]. An important difference in the case of counter-propagating beams is that the system is now

absolutely unstable.

The general nature of the transverse instability is preserved in photorefractive media.

although not the details of the instability threshold conditions. This is due to several differences

between the photorefractive and Kerr-type nonlinearities. In Kerr-type media the nonlinear part

of the refractive index n2 is not (or is only weakly) dependent on the angle 0 between the
interacting waves (see Fig.6) or, equivalently, on the wavevector k, = Ok0 of the grating written

by the pumping waves with their sidebands (FO with F, and B0 with B._) and so the

characteristic angle 0, is the result of interplay between the Kerr nonlinearity and diffraction.

The nonlinear coupling coefficient (analog of n12) in photorefractive media is strongly dependent

on the value of k1 and so material properties of the crystal must come into play, imposing their
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Figure 6. Geometry of the optical interaction, a) Excitation of
satellite beams by a single primary beam. b) Excitation of
pairs of satellite beams by counter-propagating primary
beams.

own characteristic spatial scales. Furthermore, the Kerr nonlinearity corresponds to a nonlinear

change of phase (n2 is purely real) whereas the photorefractive nonlinearity is in general

complex corresponding to both amplitude and phase changes. The magnitude of the real part of

the coupling coefficient can be enhanced by applying an external electric field to the

photorefractive crystal, but in general it is impossible to completely eliminate the imaginary part.
Also the dependence of the real and imaginary parts on the value of k, is different. In addition

photorefractive media are characterized by strong amplified incoherent scattering (fanning)
which leads to a dependence of the amplitudes of the primary beams on the axial coordinate.

even in the linear stage of the instability.

Consider two strong plane waves FO exp(ikoz - itot) and B. exp(-ikoz - ioot) counter-

propagating in a nonlinear medium. We will assume that these waves don't interact directly with

each other, i.e. the nonlinear medium doesn't support reflection gratings. Let's add a small probe
wave 4F, exp(ikoz + ikLi, - i(too + Q)t) (jk± << k0, 121 << wo) to this system. Interaction of the

strong wave F. with this probe results in a nonlinear change in the refractive index of the

medium proportional to F,3Fi" exp(-ik1 , + ii't) plus its complex conjugate. The conjugate part

supports 3F, whereas scattering of wave F, off the first part produces sideband wave
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4F_1 exp(ikoz - ik-F,. - i(owo - QY )t). Similarly scattering of wave B, off the grating results in the

appearance of waves 3B,1 (see Fig. L.b)

Evolution of the satellite beams in photorefractive media is governed by the equations:

(. + ikd)Fi = iNL [F++ + F• +q(B÷; + B'_.)],

(:- ikd)Fr = -iýAL[F, + r, + q(B., + B:_)4

(3 - ikd)B+l = -YNL[F I + Fr + q(B+, + B:, )

(0. + ikd)B_, = iYNL[FII + Fr + q(B., + B:_,)

NL = rNL I + q) (1)

with the boundary conditions F+1 (0) = Bt (1) = 0 corresponding to an absolute instability. Here

q(z)= o(z)/F(z) 2, kd=k12k and YNL(/,,Q) is the complex coupling coefficient,
dependent only on material parameters of the medium.

Equations (1) can be solved in closed form for any dependence Fo(z), Bo(z) and any values of

q and yNL(kj.,) yielding the following dispersion relation for the threshold of the absolute

instability:

(1- AI)(I- A2)- A3A4 =0,

A, = dz q(z) sin(kdZ) sinh[s(z - 1)],

fa 0 1 + q(z) sin(kdl)
IA2 = PfldZ I +zsin[kj(z -sin( ih(-7)0 1kdl l)] sinh~sz),

A3= 01 dz q(z) sin[kd(z-lI)] sinh[s(z -1]
A3 =3J° I + q(z) sin(kdl)
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A4I3d 1 sin(kdz)A4 = Z fsi dzsinh(sz),

o1 + q(z) sin(kdl)

13 = 2 7NLkd/s,

=[k(2y, - kd) 1 2  (2)

In the case of q(z) = const equation (2) reduces to:

(q + q-') + [(s/kd )-' - (s/kd)] sin(kdl) sinh(sl) +

2 cos(kdl)cosh(sl) = 0 (3)

Equations (2) or (3) can be solved for s or YNL as a function of kd not implying any particular

dependence yNL(kd). They have an infinite number of solutions (branches). In the limiting case

of kd>»IrNl Eq. (3) givesiyL= +[-lnq+i(2N+1)7r] where N is an arbitrary integer.

Solutions of Eq.(3) for several low-lying branches are presented in Fig. 6.

Calculations of the photorefractive coupling constant, including its dependence on kd. [ 141

indicate that the threshold curves shown in Fig. 6 should be readily attainable in BaTiO 3 with

modest applied fields of say 100 V/cm, or in LiNbO3 with no applied field. However, such a

conclusion would be overly optimistic since we have not yet accounted for the spatial variation

of the beam intensities due to optical losses. The intrinsic absorption in photorefractive media is

strongly dependent on the impurity doping level. We measured an intrinsic absorption coefficient
of a - 2 cm' in 0.5 cm thick samples of BaTiO 3 and LiNbO 3 with what appeared to be average
dopant levels. These measurements were made using ordinary polarized beams such that r. was

small and there was only weak generation of fanning. However, a much stronger loss

mechanism exists in the light induced broad angle fanning that is characteristic of photorefractive

media. Fanning results in very strong depletion of the main beam which can be characterized
phenomenologically by an effective absorption coefficient ctf. Measurements in the same

sample of BaTiO 3 using extraordinary polarized beams which induce strong fanning gave a total
effective absorption of aT = a + ac - 9cm', for Gaussian beams of - 1 mm diameter.

The quantitative effect of the optical losses on the instability threshold is found by solving

Eqs. (4) with q(z) = q(O)e "T'. and IF0(0)j2 = 1B0(l)I2, which minimizes the threshold coupling.

The most important feature of the results is that the minimum value of YL1 is now -9 as

compared to -1.5 without absorption, a value which is still easily accessible ia photorefractive
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Figure 6. Dispersion curves for q(z)=const.: a) focusing branch with
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Even accounting for optical losses it appears theoretically possible to observe transverse

instabilities of counter-propagating beams in photorefractive media. The instability should be

accessible with applied fields of several hundred V/cm in BaTiO 3 and without applied fields in

LiNbO 3. Additional calculations, indicate that the threshold should be several times lower still

for the same applied field if SBN:75 is substituted for BaTiO 3 . The reason for the lower
threshold in this case is that e3 is about 30 times larger in SBN:75 than in BaTiO 3 which greatly

increases the grating phase shift for the same applied field.

We remain pessimistic as to the likelihood of any such observations in the transmission

geometry studied here. The photorefractive coupling coefficients are in principal large enough

for the observation of instabilities. Unfortunately, strong photorefractive coupling is intimately

connected with strong fanning. The calculations reported here account for fanning losses in the
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simplest possible way, as an effective additional absorption. But the effect of fanning may be

even more deleterious. The fanning light fills a broad angular region that may mask the otherwise
observable instability. In addition, when the fanning is strong, as is the case under conditions

favorable for the observation of instabilities, the incident beam acquires a distorted transverse

profile, and is no longer well described by a plane wave model. The instability threshold may
indeed be many times higher when the beams are strongly distorted.

After completion of this work we became aware of the recent observation of hexagonal

patterns due to the formation of reflection gratings in a photorefractive medium 1151-
Geometries in which reflection gratings are dominant significantly improve the situation since

they allow narrow beams to be employed which greatly reduces the level Of fanning. We expect

that general features of our results will still be applicable to the reflection geometry, although

quantitative predictions of instability thresholds would have to be recalculated. The most
significant difference being that the direct coupling between the counter-propagating primary
beams leads to a different variation of the beam intensity ratio q(z), than that considered here.

VI. NUMERICAL SIMULATION OF OPTICAL KOHONEN NETWORK BEHAVIOR

While the experimental and numerical investigation suggest we will need to modify the optical

system to be in some way less sensitive to angular misalignments, we can nevertheless

demonstrate that the ideal optical system does lead to topology preserving behavior. Using a

computer program based upon the work discussed in section IV we simulated a perfectly aligned

imaging resonator with data imposed on the gain pump beam. Fig. 7 shows the conceptual

schematic of the simulation that follows the experimental work. A laser beam takes on one of

four positions in the input plane. The input plane is imaged with a lens into a multimode fiber.

The inset marked "input signals" shows the computer simulated image of the beam

corresponding to each of the four possible positions.. The multimode fiber completely scrambles
the spot location information, so that at the output of the fiber there appears a complex speckle

pattern for each of the possible inputs. One such speckle pattern is shown in the figure inset

marked "fiber output". The four possible speckle patterns provide the gain pump beam to the

imaging resonator. The input beam positions are chosen randomly in time, changing from one
spot position to another in times short compared to the response time of the gain medium. In this
way, the imaging resonator has seen each possible speckle pattern many times during one lime-

constant of the gain medium.

The key feature of a Kohonen network is that it discovers the topological relationship among
the inputs. In this case the four beam positions are taken from a two-dimensional space and have
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the relative relationship in positions shown in the input plane of Fig. 7. Ideally, the output of the

optical network would have this same relationship. The measure of distance can change, and a

rotation or inversion can take place, but the relative relationships should stay the same. The

output plane shown in Fig. 7 represents a correct topology preserving mapping of the input to the

output. We note that the resonator output plane inset showing the numerical results is reasonably

similar, though not perfectly topology preserving. Despite the imperfection, the simulation

demonstrates the remarkable property of the Kohonen mapping that has recognized the

topological structure from a very complicated collection of speckle patterns.

Output
Photorefractive Plane

Input Circuit
Plane

Multimode Fiber

Input Signals Fiber Output Resonator Output

2 10

In future work we intend to redesign the optical system towards better mapping properties. It

is clear that the wandering spot behavior is essentially unavoidable, since misalignments of the

resonator may be made small but they will always be finite. Furthermore, our theoretical work

has indicated that in order to enforce greater spatial stability, a stronger transverse interaction

must take place within the nonlinearity. That is, if one were to think of the imaging resonator for

the moment as a collection of discrete resonators, we require greater competitive interaction

among the distinct resonators. Currently, the interaction occurs only indirectly, through

competition for gain (or for less loss) in the nonlinear media. One can achieve the desired

transverse interaction using a third photorefractive element and a holographic element which
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allows each point in the transverse plane to nonlinearly directly interact with every other point.

The nonlinearity is provided by the third photorefractive medium, the transvere structure of the

interaction (how much each point interacts with every other point) is controlled by the

holographic element.
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